Technologie

CZIP-PV PRO – zintegrowany przekaźnik zabezpieczeniowo-sterujący firmy Lumel S.A.

Rys. 1. Siedziba Lumel S.A. w Zielonej Góra

1 grudnia 2020 r. Zakład Polon funkcjonujący wcześniej w strukturach Relpol S.A. stał się integralną częścią Lumel S.A – największego polskiego producenta urządzeń automatyki przemysłowej. Na mocy umowy produkcja sterowników zabezpieczeniowych CZIP oraz monitorów promieniowania SMP prowadzona jest w nowej fabryce w Zielonej Górze. Lumel S.A. zapewnia również pełną obsługę sprzedażową i posprzedażową urządzeń, a wraz z innymi spółkami należącymi do międzynarodowej grupy kapitałowej ma dostęp do globalnego rynku w celu sprzedaży i obsługi tych linii produktów na świecie.

Produkty systemu CZIP bardzo dobrze wpisują się w strategiczną gałąź rozwoju Lumel S.A. tj. rozwiązań dedykowanych do OZE, w tym szczególnie do instalacji systemów fotowoltaicznych.

Oferta Lumelu została wzbogacona o CZIP-PV PRO- zintegrowany przekaźnik zabezpieczeniowo-sterujący przeznaczonym do rozdzielni pracujących w miejscach przyłączania elektrowni fotowoltaicznych (EPV) do sieci dystrybucyjnych SN i nn, w tym także dla tzw. mikroinstalacji.

Pełen zakres instalacji systemów fotowoltaicznych Lumel S.A dla partnerów biznesowych i domowych, stanowi wraz z terminalem CZIP-PV PRO kompleksowe rozwiązanie dla inwestorów, spełniające wymagania dynamicznie rozwijającej się branży energetyki. Rozwój systemów fotowoltaicznych jest obecnie niewątpliwie jedną z najprężniej rozwijających się gałęzi przemysłu, głównie za sprawą potrzeb inwestycji w energię odnawialną. Dynamiczny przyrost liczby takich inwestycji, zmienia w bardzo szybkim tempie, strukturę sieci energetycznej w Polsce. Powoduje to również, że doświadczania w tym obszarze i potrzeby stawiane tego typu instalacjom, wymagają również ciągłego aktualizowania i modernizowania istniejących rozwiązań. Dokładne rozpoznanie właściwości sieci z większą liczbą EPV pozwoli w przyszłości na zidentyfikowanie zagrożeń i opracowanie takiego układu zabezpieczeń i wyspecjalizowanych przekaźników, które zapewnią ochronę przed skutkami różnych zakłóceń, w tym ochronę urządzeń elektrycznych, poprzez które EPV są przyłączone do sieci i samych sieci .

Wprowadzenie

Zintegrowany przekaźnik zabezpieczeniowo-sterujący CZIP-PV PRO został opracowany na bazie aplikacji CZIP-PRO 1E przeznaczonej dla pól liniowych z generacją lokalną w rozdzielniach SN. Oba rozwiązania zostały dotychczas zastosowane z powodzeniem na wielu obiektach w Polsce, w tym elektrowniach wiatrowych, słonecznych, gazowych i biogazowych oraz obiektach łączonych/skojarzonych.

Rys. 2 Sterownik CZIP-PV PRO

Specyficzne wymagania dla EPV, w zakresie funkcji zabezpieczeniowych, były inspiracją do opracowania nowej konstrukcji przekaźnika
CZIP-PV PRO i jednocześnie aplikacji, która udostępnia specjalnie opracowany układ zabezpieczeń i automatyk. Sterownik posiada zarówno zabezpieczenia zasilane z obwodów napięciowych strony SN, jak i nn. Na potrzeby realizacji wymaganych funkcji, przekaźnik wyposażony został w dodatkowe wejścia pomiaru napięć po stronie nn. Urządzenie to spełnia wszystkie wymagania w zakresie elektroenergetycznej automatyki zabezpieczeniowej dla EPV, zapisane w IRiESD (Instrukcja Ruchu i Eksploatacji Sieci Dystrybucyjnej z dnia 1.01.2014 r., karta aktualizacji nr 10/2018) i normach PN-EN 50549-1, PN-EN 50549-2, PN-EN 50160-2010. Szczegółowa analiza tych wymagań, na podstawie której został opracowany układ zabezpieczeń dostępnych w urządzeniu CZIP-PV PRO była już opisywana w [1]. CZIP-PV PRO oprócz wymaganych przepisami zawiera również dodatkowe zabezpieczenia, w tym kryteria podimpedancyjne od skutków zwarć międzyfazowych. Umożliwiające wykrywanie zwarć niezależnie od wartości prądu zwarciowego (szczegółowo opisane w [2]). Rozwój systemów fotowoltaicznych oraz skutki ich ekspansji w struktury sieci energetycznych prowokują do formułowania kolejnych wniosków i proponowania rozwiązań, które mogą przynajmniej w pewnym stopniu niwelować potencjalne zagrożenia. W artykule przedstawionych zostanie kilka takich właśnie nowych spostrzeżeń.

Rys. 3. Hala montażu SMT i THT

Właściwości i wymagania dla elektrowni fotowoltaicznych

Istotnym wnioskiem wynikających z dotychczasowych analiz, zarówno literatury jak i zebranych doświadczeń jest fakt, że EPV są źródłem mocy zachowującym się zupełnie inaczej, niż wszystkie inne źródła, szczególnie z maszynami wirującymi. Nie są znane specjalistyczne publikacje na temat schematu zastępczego EPV lub jego szczegółów. Model zwarciowy powinien być taki, aby można było dobrać nastawy zabezpieczeń „ręcznie”, czyli bez korzystania z wyspecjalizowanych programów obliczeniowych. Z puntu widzenia doboru zabezpieczeń i ich nastaw przydatne byłoby określenie szczegółowych właściwości EPV dotyczące ich pracy podczas stanów zakłóceniowych w sieci, szczególnie podczas zwarć międzyfazowych. Główny problem EPV i zjawisk w sieci dotyczy właśnie zwarć międzyfazowych. Zwarcia doziemne i zabezpieczenia od ich skutków nie różnią się niczym w stosunku do problemów występujących przy podłączaniu innych źródeł lokalnych i są opisane w [3]. Jednocześnie aktualne wymagania dla EPV i przepisy nie precyzują wymagań dla typowych zabezpieczeń od skutków zwarć międzyfazowych. Wg IRiESD w tym miejscu od skutków zwarć międzyfazowych należy zastosować zabezpieczenia nadprądowe – zwłoczne lub zwarciowe. I tu pojawia się pewien problem związany z uzyskaniem wymaganej czułości. Jedynym znanym i ogólnie przyjmowanym parametrem dla EPV jest to, że największy prąd zwarciowy generowany przez EPV wynosi 1,04 – 1,1 jej prądu znamionowego (można spotkać współczynnik 1,2). Zgodnie z zasadami EAZ przy nastawieniu zabezpieczenia nadprądowego na wartość prądu znamionowego EPV, współczynnik czułości zabezpieczenia nie przekroczy wartości 1,1. Współczynnik czułości wymaganym przez IRiESD, wynosi 1,5, zatem nie ma możliwości uzyskania prawidłowej nastawy zabezpieczenia nadprądowego. Odróżnienie stanu zwarcia od obciążenia jest niemożliwe przy pomocy kryterium nadprądowego (w linii, gdzie płynie tylko prąd elektrowni słonecznej). Zabezpieczenie podimpedancyjne dostępne w aplikacjach systemu CZIP, w tym CZIP-PV PRO jest propozycją rozwiązania tego problemu. Kryteria podimpedancyjne z zasady wykrywają zwarcia niezależnie od wartości prądu zwarciowego i mogą stanowić alternatywę lub uzupełnienie dla zabezpieczeń nadprądowych zwarciowych. Pozwalają na uzyskanie niezależności zasięgu zabezpieczenia od rodzaju zwarcia oraz umożliwiają bardziej precyzyjnie określać ten zasięg. Zabezpieczenia zwarciowe powinny mieć możliwie krótki czas zadziałania tak, aby zasięg analizowanego zabezpieczenia kończył się przed następnym zabezpieczeniem nadprądowym. Spełnienie tego warunku robi się coraz trudniejsze ze względu na zwiększające się nasycenie sieci reklozerami. Zasięg tych zabezpieczeń jest zależny od wartości prądu zwarciowego, a ten zależy od rodzaju zwarcia (dwu- lub trójfazowe) i wartości mocy zwarciowej, która jest zmienna, szczególnie dla elektrowni z generacją lokalną. Więcej informacji na temat samego zabezpieczenia impedancyjnego oraz doboru nastaw zabezpieczeń nadprądowych i podimpedancyjnych można znaleźć w „Poradniku doboru nastaw w terminalach Systemu CZIP” autorstwa dr Witolda Hoppela, który jest dostępny za pośrednictwem strony www.czip-pro.pl / www.lumel.com.pl.

Rys. 4. Laboratorium pomiarowe

Pozostaje ciągle wiele pytań do rozstrzygnięcia. Jak długo generowany jest prąd zwarciowy podczas zwarć w pobliżu zacisków EPV? Jak przebiegają zjawiska podczas zwarć trójfazowych i dwufazowych? Na ile impedancja od zacisków EPV do miejsca zwarcia wpływa na przebieg prądu? Falowniki stosowane w EPV należą do grupy falowników sieciowych i bez zewnętrznego napięcia nie pracują, nie potrafią się utrzymać w pracy „na wyspę”. Falownik posiada własne zabezpieczenie podnapięciowe, które go wyłącza, jednak nie każdą sytuację można przewidzieć. Zupełnie nie są rozpoznane układy, kiedy w pobliżu EPV znajdzie się inna elektrownia lokalna z maszyną wirującą, szczególnie synchroniczną, lub duże odbiory silnikowe, które tuż po zwarciu zachowują się jak generatory asynchroniczne. A jak zostanie przez sterownik danej EPV potraktowane napięcie wytwarzane przez inne EPV, w tej samej sieci, jeśli dodatkowo jeszcze w niej będzie dużo silników asynchronicznych wydłużających stałą czasową tego mikrosystemu?

Postawione powyżej wątpliwości można mnożyć, w zależności od układu sieciowego. Wydaje się, że specjaliści od przekształtników pomogliby odpowiedzieć na część z nich. Jednakże na zdecydowane właściwości EPV w różnych układach sieciowych chyba trzeba jeszcze poczekać.

Rys. 5. Okno programu CZIP-ZMS

Wykaz zabezpieczeń w CZIP-PV PRO

Bazując na dotychczasowych ustaleniach oraz zebranej wiedzy został opracowany układ zabezpieczeń dla aplikacji CZIP-PV PRO, przeznaczony do pracy w miejscach przyłączania EPV do sieci dystrybucyjnej. Przekaźnik jest wyposażony w zabezpieczenia: od skutków zwarć międzyfazowych, napięciowe, częstotliwościowe i ziemnozwarciowe. Od skutków zwarć międzyfazowych jako główne można zastosować nadprądowe, ale warto je uzupełnić podimpedanycjnymi, ponieważ jak podano wcześniej, nadprądowe nie będą wykazywać się odpowiednią czułością. Dodatkowo zgodnie z wymaganiami norm wprowadzono zabezpieczenie nadnapięciowe, dla którego kryterium jest średnia wartość napięcia z ostatnich 10 minut. Zadziała ono wówczas, jeśli warunek rozruchu w nastawionym czasie spełni jedno z trzech napięć przewodowych. Są argumenty przemawiające za wprowadzeniem zabezpieczenia nadnapięciowego trzystopniowego, stąd takie możliwości zostały również zapewnione w sterowniku CZIP-PV PRO. Natomiast dla zabezpieczeń podnapięciowych zaproponowano dwa stopnie. Dostępne jest również kryterium składowej przeciwnej napięcia.

Wykaz zabezpieczeń dostępnych w CZIP-PV PRO dla EPV zasilanych z obwodów napięciowych od strony średniego napięcia jak i niskiego napięcia jest przedstawiony w tabeli 1.

CZIP-PV PRO jest również wyposażony we wszystkie funkcje zabezpieczeniowe zasilane z obwodów prądowych, analogiczne jak w aplikacji CZIP-PRO (1E) dla linii SN z generacją lokalną.

Oprogramowanie narzędziowe

Inżynierską obsługę przekaźników CZIP-PV PRO, znakomicie wspomaga oprogramowanie narzędziowe CZIP-Set, które obsługuje całą grupę produktów linii CZIP. Dodatkowo inwestor ma możliwość zdalnego monitorowania wielu rozproszonych obiektów (OZE i przemysłowych rozdzielnic SN), za pomocą system monitorowania urządzeń CZIP-ZMS tzw. „miniscady”. Moduły zabezpieczeń CZIP posiadają możliwość dołączenia do sieci Internet za pomocą interfejsu Ethernet i ich zdalnego nadzorowania. Funkcjonalność ta została wykorzystana do zbudowania systemu, do którego dostęp jest możliwy za pomocą dowolnej przeglądarki z urządzeń stacjonarnych i mobilnych, wykorzystując standardowe protokoły komunikacji.

Rys. 6. Laboratorium pomiarowe

Podsumowanie

CZIP-PV PRO to specjalistyczny przekaźnik zabezpieczeniowy przeznaczony do pracy w rozdzielnicach OZE, w szczególność EPV, który spełnia wszelkie wymagania aktualnych przepisów. Proponujemy również dodatkowe rozwiązania, które mogą stanowić uzupełnienie istniejących przepisów i wymagań. W zależności od specyficznych warunków na obiektach np. wynikających z konstrukcji rozdzielnicy lub innych zabezpieczanych elementów jest wręcz wymagane zastosowania dodatkowych zabezpieczeń i niestandardowych rozwiązań. Modyfikacje w zakresie układu zabezpieczeń oraz funkcjonalności samych urządzeń, będą prawdopodobnie jeszcze aktualizowane i udoskonalane, w zależności od potrzeb i oczekiwań wobec instalacji fotowoltaicznych. Stawiane w artykule pytania są zachętą do dyskusji i poszukiwania dalszych rozwiązań oraz udoskonalania narzędzi zabezpieczeniowych.

Literatura

[1] Hoppel W., Sieluk W., Zieba B. Automatyka zabezpieczeniowa dla elektrowni fotowoltaicznych, Wiadomości Elektrotechniczne, nr 05/2020]
[2] Hoppel W., Sieluk W., Czarnecki D.: Zabezpieczenie podimpedancyjne
w terminalach polowych CZIP-PRO. Wiadomości Elektrotechniczne, nr 6/2019 r.
[3] Hoppel W.: Sieci średnich napięć. Automatyka zabezpieczeniowa i ochrona od porażeń. PWN, Warszawa, 2017 r.

Lumel S.A.

Click to comment

Leave a Reply

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *

To Top